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Abstract—The J-integral is calculated numerically using the domain integral method and a contour
integral according to the definition of the J. It was conjectured that the methods could give conflicting
results for nonproportional loads. It is found, however, that both methods give satisfactory results
conforming even for highly nonproportional loads. In plane strain, the near-tip field could success-
fully be characterized by a two-parameter description according to the J-Q theory. Remotely applied
nonproportional loads corresponded to different paths in the J-Q space. This was demonstrated in
the range of small-scale yielding up to fully yielded situations.

1. INTRODUCTION

Among the central problems in fracture mechanics analysis is the evaluation of the J-
integral. Even more important is whether J can characterize the crack front state. Originally
J was defined (Rice, 1968 ; Eshelby, 1970) for purely elastic conditions as a contour integral
(correspondingly a surface integral in three dimensions, cf. Budiansky and Rice, 1973).
Computational considerations motivated a development of area integration (or volume
integration in three dimensions) by the so-called virtual crack extension method (Parks,
1974) or domain integral method (Li et al., 1986; Shih et al., 1986; Nakamura er al.,
1985). These methods can easily be shown to be mathematically equivalent to the contour
integration for an elastic problem free of volume forces and thermal gradients. As the J-
integral concept has been extended to incremental elasto—plastic problems this equivalence
ceases to be a strict mathematical fact. For cases of nearly proportional loading, or more
precisely for cases when the contour integral is nearly path independent, the equivalence
still holds in an approximate sense. For strongly nonproportional loads, differences between
the two formulations may occur. In many engineering problems the external loading is
nonproportional, for instance when mechanical and thermal loads interact. Another case
when the stress state in the crack front vicinity is strongly nonproportional is when the
crack starts to grow. It can be shown that for conventional incremental plasticity laws the
strain singularity at a quasi-statically growing tip is so weak (for the plane small strain
case: cf. Slepyan, 1974, for perfect elasto-plasticity and Amazigo and Hutchinson, 1977,
for linearly hardening materials) that the near tip value of the contour definition of J
approaches zero as the integration path is shrunk towards zero. In this case one obviously
has to rely on far-field values of the J-integral. It is then a question of whether some
unambiguous value can really be obtained from a FEM calculation.

In the present study, the fact that the different computational methods may lead to
different results is examined. Results obtained with the commercial finite element code
ABAQUS (1989), which uses the domain integral method, are compared with results
computed through contour integration in accordance with the original definition of the J-
integral.

In the case of proportional loading investigators like McMeeking and Parks (1979),
Shih and German (1981) and Betegon and Hancock (1991) have examined under which
conditions J alone characterizes the crack tip state. It was found that J-dominance prevails
at large loads only in rather deeply cracked specimens. In some geometries the loading has
to be so low for J-dominance that even linear elastic fracture mechanics should apply. To
cope with these problems a two parameter description is motivated. Recently O’Dowd and
Shih (1991, 1992), Du and Hancock (1991) and Betegon and Hancock (1991) have suggested
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such descriptions. These models are the same if small scale yielding conditions are satisfied.
In the case of remotely applied nonproportional loads, S6nnerlind and Kaiser (1986)
investigated if a remote path independent J-value can be reached. By investigating a SEN
specimen they established that this could be found. In the present study the question of
whether the J-integral characterizes the crack tip state under remotely applied non-
proportional loads, provided a path independent value of J is found, is investigated for the
plane strain case. The near-tip fields are then characterized by adopting the J-Q theory (cf.
O’Dowd and Shih, 1991, 1992), since this two-parameter description is more suited to fully
yielded situations. In this two-parameter description, Q only is expected to parameterize
the stress and strain distributions when distances are normalized by J/oy. Here oy is the
yield stress.

The studied examples involve combined bending and tension in two and three dimen-
sions and simulated crack growth in three dimensions. Large deformations are taken into
account throughout the analysis, except in some linearly elastic test examples and one two-
dimensional example where a small-strain approximation was utilized for comparison
reasons. This was chosen in order to get a more complete solution of the plastic deformation
close to the crack front for the purpose of investigating the near-tip fields.

2. JJINTEGRAL FORMULATIONS

2.1. Line integral definition
The J-integral for the two-dimensional case, without body forces and tractions on the
crack surfaces, taking large deformations into account, is defined by (cf. Eshelby, 1970) :

Ou,
with the deformation work per unit volume defined by :
au,./BXj aui
o[ n)

The stress measure used is the first Piola—Kirchhoff stress given as:

0X;

Py = |F|°m'§
P

(€)

Here g,;is the Cauchy stress, |F| the ratio of volume in the current configuration to volume
in the undeformed configuration, %, the displacement and X; the position of a material point
in the undeformed configuration and thus x;, = X;+u,. I' is a curve in the undeformed
configuration embracing the crack tip, beginning on the lower crack surface and ending on
the upper one and n the normal vector, pointing outward from the curve I". The definition
of W can also be expressed as:

W = J‘ |F|0'ijDij ds, 4)
0

where ¢ is a loading parameter which is zero in the undeformed state and equal to ¢4 in the
deformed state for which W is to be computed. The rate of deformation tensor D;;is defined
as the symmetric part of the spatial velocity gradient. In ABAQUS the deformation work
is calculated using the form according to eqn (4).

In three dimensions the J-value related to a point s on the crack front can be formally
defined (cf. Bakker, 1984 ; Carpenter et al., 1986) by the expression (5). The coordinate
system is assumed to be oriented so that the X -axis lies in the crack plane and is a normal
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to the crack front at the considered point. The X;-axis is tangential to the crack front and
the X,-axis is perpendicular to the crack plane:

6“,- a 6”,'

Here I is a curve in the undeformed configuration enclosing the crack front, at a position
given by s, in the plane X, = 0. The normal vector pointing outward from the curve I is
denoted by n and Ay is the surface area defined by I' as depicted in Fig. 1(a).

2.2. The domain integration method

The J-evaluation method of ABAQUS (1989) is based on the domain integration
technique developed by Shih ez al. (1986). The crucial point in their derivation of the final
expression of J is the existence of a strain energy density function. The domain integral
expressions for J below will be denoted G to emphasize the difference with the eqns (1)-
(5). Also in the expressions below, thermal strain, body forces and crack surface tractions
are assumed to be absent.

In two dimensions the domain integral expression is:

_ Ou; 0q,
G_L<Pﬁ5,?,_W6”>6_deA' ©)

Here A is the area depicted in Fig. 1(b) and ¢, is a sufficiently smooth function in the region
A chosen to be unity on I" and zero on C, where the contour C can be seen in Fig. 1(b).
Equation (6) can now by use of the divergence theorem, the equations of equilibrium,
OP;/0X; = 0, and the properties of ¢,, be written as:

Fig. 1. (a) Definition of local orthogonal Cartesian coordinate system at the point S on the crack

front. (b) Definition of the integration domain for the domain integral (two dimensions).

(c) Definition of the integration domain for the domain integral (three dimensions). (d) The
volume V, in (), is divided into subvolumes ¥, and ¥;, which are separated by the surface S, .
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By comparing eqns (1) and (7) the remaining area integral in eqn (7) thus expresses
the difference between the contour integral and the domain integral. In general it vanishes
only if the material is (possibly nonlinearly) elastic or if the stressing is purely proportional.
This fact has of course been well-known for a long time (for a discussion ¢f. Moran and
Shih, 1987 ; Nilsson and Stéhle, 1988) but it seems that it has not always been appreciated.
It should be mentioned that for incremental plasticity with nonproportional loading, neither
eqn (1) nor eqn (6) can be interpreted as the energy release rate and path independence
may not be expected. However, if a path independent J-value can be found, it could still
serve as crack-tip state characterizing parameter.

In the development of a local value of J in three dimensions, Shih er al. (1986) derived :

ou, F
G, = J <P,, % Wék,> a;'," av. ®)

Here G4 could be interpreted as a weighted J-value along a segment of the crack front, L,
where the crack plane is oriented in the X' —X; plane and V is the volume embracing L.,
see Fig. 1(c). If the material is elastic, G5, = 6U/da is the energy release rate extending the
crack g,da along the crack front segment L .. Here U is the potential energy, a is the crack
length and the direction of ¢, is normal to the crack front in the X |—X; plane. While
discussing the vector field g, it is fruitful to divide the volume ¥ into subvolumes V, and
V., in analogy to the two-dimensional case, as depicted in Fig. 1(d). In the figure, S, is the
surface separating the volumes ¥V, and V;. The vector field g, is zero on the outer boundary
to V, excluding the crack faces and the crack front, and has a finite value on the surface S}
[Fig. 1(d)]. In V;, g, depends on X, and X; only and in V,, g, is an arbitrary sufficiently
smooth function. With the chosen coordinate system, ¢, is zero in V. For simplicity and
without loss of generality, let the segment L. of the crack front be straight, with the
coordinate system defined as before. Then g, will reduce to ¢, and in ¥V}, ¢, is a function of
X, only. With use of the divergence theorem, the equations of equilibrium and the properties
of g,, eqn (8) can be written as:

Ou %y, ow Ou; 0q,
G ”LL(W‘S” "6X) n;q: dS— J < ”aX oX,  ox >"‘dV f Puax ax, 4

®

Note that S, is the only part of the surface surrounding V, where q, is different from zero.
In order to find a comparative J-value from the contour integral, eqn (5), a weighted
value, J,, over the straight crack front segment L, can be expressed as:

Ou; 0 u
Ja= £c41(X3)J(X3)dX3 = LL<W51, an )’1141 ds— f 6X <P3'6X )111 dav,

(10

where J(X) is given by egn (5), noting that s could be interchanged for X’; for this particular
case, and ¢, is now interpreted as a weight function depending on X, only.

The difference between the domain integral, eqn (9), and the contour integral, eqn
(10), is obtained as:
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%y, 6W>
Go—Jr= —L (Pﬂm ~ox, )T av. (11)

The conclusion for the difference is the same as in the two-dimensional situation discussed
above.

If the contour I' in eqn (7) [implicit in eqn (6)] and the volume V; in eqn (9) [implicit
in eqn (8)] is shrunk to zero the vector function ¢, can be referred to as a “pyramid”
function. In the other case when I" and V; remain finite, ¢, can be referred to as a “plateau”
function. Computational aspects have motivated the use of a plateau function, since in
general, the numerical resolution of the near-tip fields is less accurate than the numerical
resolution of the remote fields, as discussed by Shih ez al. (1986).

In ABAQUS a plateau function is chosen for both two- and three-dimensional cases.
The ring of elements through which the current integration path passes will in the two-
dimensional case correspond to the area A in eqn (6) [see also Fig. 1(a)] and will in the
three-dimensional case correspond to the volume ¥ in eqn (9) [see Fig. 1(d)], but for this
case elements situated inside, in volume V;, will also contribute to the final J-value. The
radial distance, in undeformed configuration, from the crack tip to 4 and to V,, respectively
will be referred to as the contour radius (R.qnou) below.

2.3. Implementation of the contour integral method

In order to perform J-integral evaluations according to the contour integral method a
post-processor to ABAQUS was developed. In two dimensions, corresponding to eqn (1),
the integration path is chosen as a line through the Gauss points of the elements. Geometry,
displacements, stresses and deformation work from ABAQUS are used to evaluate the
value of the integrand.

In the three-dimensional case, eqn (10) is employed, where a local coordinate system,
oriented as shown in Fig. 1(a), is fixed to the midpoint of the crack front segment L.
Furthermore, if the function ¢, is chosen as unity, an average J-value (J) per unit crack
advance in the local X-direction can be defined as:

| Ou;

J=Z: Ai(Wéu——Pﬁa—Xl)n,- d4. (12)
Here A4, is the surface in undeformed configuration surrounding the volume V; and n; is
the normal, pointing outward from the surface element d4. The contour integral rep-
resentation (12) is comparable to the expression used by Bakker (1984), where both the in-
tegration methods were compared under proportional loading. The meshes used here
have a region of elements that follows the possibly curved crack front. This region is divided
into slices of one element thickness. The J-integral is evaluated for each of these slices to
give average local values of J along the crack front passing through the crack tip element,
as described above. The surface (for each slice) to be integrated over is divided into three
parts : One top part through the Gauss points, corresponding to the path in two dimensions,
and two side parts, being the two opposite sides of the elements in V;. Since the two side
parts do not pass through the Gauss points interpolation is needed. In the case of an
isoparametric 20-noded solid brick element with reduced integration a trilinear interpolation
is used. In the expression for the J-integral, eqn (12), L, is the projected length of the
appropriate crack front element on the local X;-axis in the undeformed configuration.

In order to make a fair comparison with the domain integral method, an average J-
value over one slice is calculated for this method as well. In ABAQUS, as well in Shih et
al. (1986), J(s) is interpolated using the same order of interpolation as used in the elements
abutting the crack front, i.e.:

J6) = 3 I, 13)

where W,(s) are the piecewise quadratic shape functions in the present model. The value of
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J(s) at the Ith node on the crack front is denoted J; and N is the total number of nodes
along the crack front. Using eqn (13) the average domain integral value over one element,
henceforth called G, is given by :

= (Ji_ +4J+J150)/6, 14

where I refers to the midpoint node of the crack front element in question. G is then
computed for each contour in all element slices along the crack front.

3. PROBLEMS STUDIED AND FEM MODELLING

Three example problems are studied : combined bending and tension in two and three
dimensions and simulated crack growth in three dimensions. The result for the particular
problem will follow immediately after each problem statement.

In the code of the general purpose finite element program, ABAQUS, an updated
Lagrangian formulation is used. The algorithm of Hughes and Winget (1980) is employed
to account for rigid body rotations during large elastic—plastic deformation. The governing
equations are then given on rate form. The material under consideration is assumed to be
homogeneous, elastic-plastic with isotropic hardening and to obey the von Mises yield
criterion and its associated flow rule. The constitutive law, discussed by McMeeking and
Rice (1975), accounts for possible rotations of principal axes and can be expressed as:

1 311
i =2G 5,k511+ 5k15'~— T ?2“ Dy, (1%5)
=—+1
G+
for plastic loading and
gij =2G [5,k611+ 5k16u]Dkl (16)

for elastic loading or any unloading. Here 7;; is the Kirchhoff stress tensor defined by
7, = |Floy;. a7
Poisson’s ratio is denoted by v, the shear modulus by G, J;; is the Kronecker delta,
T =1 — 3t T = 3T, (18)

h is the slope of the uniaxial Kirchhoff stress vs logarithmic plastic strain curve and the
symbol V denotes the co-rotational stress-rate. In all examples below, the uniaxial response
of the material is approximated by a piecewise linear function in the FEM model. All
constitutive parameters are given in relation to Cauchy stresses, since this is required as input
to ABAQUS, and then transferred to correspond toKirchhoff stresses within ABAQUS. The
output from ABAQUS is also Cauchy stresses. In all examples below, the relative difference
between the Kirchhoff and Cauchy stresses is of the order of stress divided by elastic
modulus and thus very small. The governing equations of equilibrium, including the effects
of volume change and finite strains, are enforced through a variational procedure similar
to that discussed by McMeeking and Rice (1975).

In the finite element models, biquadratic eight-noded isoparametric plane strain
elements are used for the two-dimensional cases and triquadratic 20-noded solid brick
elements for the three-dimensional cases. In both the two-dimensional and three-dimensional
cases, elements with reduced integration are used, except in the elements close to the
crack tip (crack front) where elements with full integration are used. This choice is made
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in order to prevent hourglassing, especially for elements with a free surface. Since a state
of near incompressibility prevails close to the crack tip in the two-dimensional cases, mesh
locking can occur in fully integrated elements. To circumvent this effect a selective reduced
integration technique (Nagtegaal et al., 1977) is used.

The crack tip is not modelled as being initially sharp in the elastic-plastic cases. Instead
a small notch is used, see Fig. 2(c). The element distortions are more easily controlled with
this type of mesh. For the load levels of interest in the present context, the crack-tip opening
displacement is much larger than the initial notch radius. Therefore, the influence of the
notch on the fields is insignificant (cf. McMeeking, 1977a; Moran et al., 1990). In some
examples in combined bending and tension a linear elastic material is used. In these examples
the nodes at the crack tip are tied together and the midnodes along the radial edges are
placed at the appropriate quarter positions so that the displacement gradient contains terms
that are of order 1/(\/;) (cf. Barsoum, 1977), which is consistent with crack-tip fields for
linearly elastic bodies (Fig. 2(d)).

The load levels are measured by a nondimensional parameter A, defined by :

A= (19)

where L is a characteristic length in the problem and oy is the yield stress. Note that 4 also
describes the ratio between the size of near-tip field, which is of the order of J/oy, and the
characteristic length. The ASTM condition for linear fracture mechanics to be applicable
is that A should be smaller than about 1/1400 for the two-dimensional analysis and 1/2200
for the three-dimensional analysis. The difference is due to different E/oy in the respective
cases, where E denotes Young’s modulus. For deep cracks, the corresponding condition

a) FA b)

a bR2\bi2

> p H
p* W=1 a=W/2 H=2W
w L=a (characteristic length)
c) d)

Fig. 2. The two-dimensional example investigated—SEN specimen: (a) geometry and boundary
conditions, (b) finite element mesh, (c) crack-tip model for nonlinear analysis and (d) crack-tip
model for linear analysis.
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Table 1. A-values and applied normalized forces at the different
load levels. The l-value for the final load is based on the pro-
portional loading sequence

Load level 1 2 3 4
Ao 1/8000 1/1200 1/400 1/200
i ~1/1896 ~1/143 ~1/28.8 =~1/12.1
F 0.424 1.01 1.11 1.17
P 0.193 0.49 0.82 1.05

for J-dominated nonlinear fracture mechanics is 4 < 1/25 for bending and A < 1/200 for
tension (cf. McMeeking and Parks, 1979 ; Shih and German, 1981).

3.1. Example 1 : combined bending and tension in two dimensions

First a nonproportional loading situation in two dimensions is considered. A single
edge cracked specimen (SEN) under plane strain conditions is chosen since it is easy to
apply the extremes of tension and bending. The geometry and the finite element mesh are
shown in Fig. 2. For symmetry reasons only the upper half of the body is modelled. The
top and bottom edges of the mode! are constrained to remain straight, but contraction is
allowed in the X' |-direction. Since the deformation of the initial notch becomes extremely
large, the size of the initial notch radius, p,, is increased in problems with larger load levels.
It will, however, always remain small compared to the crack length, a, and to the blunted
crack tip. The chosen initial notch radius, p,, are 0.2 x 10~ %a, 0.5 x 10~ *a, 6.0 x 10~ *g and
6.0 x 10~ “a for the load levels 1, 2, 3 and 4, respectively. The number of elements in the
circular region in the separate models are 839, 839, 671 and 671 for the load levels 1, 2, 3
and 4, respectively, and in all models there are 238 elements in the remaining part.

The loads are applied in three ways: tension followed by bending, bending followed
by tension and both applied simultaneously at proportional loading. This is repeated for
four different load levels which are chosen so that each of F and P alone would give the
same A-values, called A,, which are shown in Table 1. Here also the A-values, based on the
proportional loading case, for the final load levels are given. In the expression of A, eqn
(19), L is equal to the crack length, a. The applied forces are normalized by their respective
limit loads, i.e.

F~=F/FLa F=P/PL5 (20)
where

2 t
FL == Gy(W—a)t and PL = 1.450’Y(W—a)2m. (21)

N

The limit loads, eqn (21), correspond to solutions summarized by McClintock (1971)
and agree well with the overall behaviour of the force vs displacement curves for the pure
tension and the pure bending case, respectively. Following Rice (1972), a generalized
combined tension-bending yield surface is derived as depicted in Fig. 3 together with the
different loading sequences.

3.1.1. Results: combined bending and temnsion in two dimensions. To check the
implemented contour integral routine, corresponding to eqn (1), a problem with a linear
elastic material (v = 0.3), is studied. The mean J-value together with the maximum variation
can be seen in Table 2. The mean value is calculated using J-values from contours passing
through the 4th to the 35th element ring surrounding the crack tip, with R, ~ 3x 107 %a
and R;;s ~ 0.65a (the radial distances from the crack tip to the respective contour). The
result using the contour integral method agrees very well with the result using the domain-
integral method (ABAQUS), although the former method shows a somewhat greater scatter
around the mean J-value.
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— T

non-prop. bending-tension

PP,

non-prop. tension-bending

Fig. 3. Loading sequences for the SEN specimen and generalized combined tension-bending yield
surface according to Rice (1972).

The elastic—plastic finite strain analysis is carried out for a material with v = 0.3,
&y = oy/E = 1/500 and the hardening properties in egn (15) are described by a power law
hardening material with » = 10 in a uniaxial stress-strain law of the form:

N s e
<i> =245, 22)
Oy Oy Ey

6= (%o;ja;j)l/z’ U?j = Gij__;o'kln (23)

is utilized and &7 is the logarithmic plastic strain defined as:
&P = f(%D,PjD,P,-) 2 g4y, 24

Here D}, is the plastic part of the rate of deformation tensor.

In a typical analysis, e.g. the proportional case, load level 4, 1300 load increments with
roughly 3 equilibrium iterations per increment (Newton’s method), were needed to reach
the final load. This required about 7.7 CPU-hours on a HP-730 work station.

The resulting J-values vs the radial distance (in undeformed configuration) to the
contour at which J has been calculated are shown in Fig. 4. Each diagram contains results
for all three loading paths for a particular load level. All curves are scaled by the converged
J-value based on the domain integral method for the proportional case, G,.,. The final
values of the nondimensional loading parameter A are given in Table 1. For the first load
level the plastic zone is equal to 0.036 x a for all load paths and the ASTM-condition for
linear elastic fracture mechanics is fulfilled. For the remaining load levels the plastic zone
has spread across the ligament, hence large scale yielding prevails for these load cases.

The differences between the results from the two methods, effectively corresponding
to the second term in eqn (7), are small, within a few percent. They are not significantly

Table 2. Mean J and G values, of contours numbers 2-35, for
the linear elastic text example (SEN)

Mean value  Variation, %

G/(63a/E), (ABAQUS) 1.45633 0.11
J/(a%a/E), (contour integral) 1.45652 0.32
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Fig. 4. J and G vs R, at load levels (a) 4 ~ 1/1896 (G,rop = 0.2518(c%a/E)), (b) A~ 1/143
(Gorop = 3.5(6%a/E)), (c) 2 = 1/28.8 (Gprop = 17.4(0%a/E)) and (d) A = 1/12.1 (G, = 41.2(63a/E)).

larger for the nonproportional cases than for the proportional ones. It should be mentioned
that the second term (nonzero if nonradial stressing) only involves the area over the ring
of elements passed by the contour in question due to the choice of the ¢, function made in
ABAQUS as mentioned above. Both methods appear to give the same remote converged
J-values, though the remote J-values from the nonproportional tension—bending case varies
somewhat. This could be explained by Fig. 3, where it can be seen in relation to the
generalized yield surface that the tension-bending sequences exhibit a higher degree of
nonproportional plastic loading than the other sequences do. This is also confirmed by
checking the plastic displacements corresponding to the applied forces F and P, where the
tension—bending sequences differ significantly from both the proportional and the bending~
tension sequences. The latter ones agree fairly well with each other.

The general trend is that the J-values converge somewhat faster towards the remote
values for the domain integral method than for the contour integral method as might be
expected.

For all load levels the J-integral exhibits a significant path dependence immediately
adjacent to the blunted crack tip. In fact the J,;-value seemingly tends to zero. This is in
agreement with findings by other authors when finite strains have been considered and has
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been thoroughly discussed by McMeeking (1977b). McMeeking argues in the case of small-
scale yielding that if an outer field, characterized by a path independent value of J, controls
the deformation in an inner field in which J is path dependent, then the remote J-value is
directly connected to the near-tip field. This has also been demonstrated for large-scale
yielding in deeply cracked plane strain specimens by McMeeking and Parks (1979).

In the proportional cases J has reached 95% of the converged remote value on a
contour at radial distances of R = 11J/ay, 11J/ay, SJ/oy and 3J/cy for load levels 1, 2, 3
and 4 respectively. In the nonproportional tension—bending cases the rate of convergence
is more rapid while in the nonproportional bending—tension cases the convergence is slightly
slower.

At the lowest load level (Fig. 4), fulfilling the ASTM condition for linear elastic fracture
mechanics, the order of load application has an insignificant effect on the remote J-values.
The differences become larger for higher load levels and the trend is that a tension—bending
sequence deviates from the other ones.

At the highest level considered it can be questioned whether the J-values for the
bending—tension sequence have really converged to an unambiguous remote value. Here
the size of the near-tip field is probably not negligible compared to the remaining ligament
and it is dubious if a remote J-value is connected to the near-tip field.

When judging the differences it has to be kept in mind, however, that experimental
determination of critical J-values seldom can be expected to yield a better accuracy than
say +15%.

At the higher load levels, when path dependence in J is more pronounced, it is not so
obvious what is due to finite strain effects and what is due to the influence of remotely
applied nonproportional loads. To this end load level 3 was reanalysed using a small strain
assumption (the mesh was the same). The resulting J-values, normalized in the same manner
as before, versus contour radius are shown in Fig. 5. The remote behaviour resembles the
results from the finite strain analysis. For instance in the proportional loading case, both
finite strain and small strain analysis result in path independent J-values at contour radius
greater than 0.5a. However, one should observe that G,,,, is roughly 22% higher in the
small strain analysis than in the finite strain analysis. The reason for this is that the force
P will cause a displacement in the positive X |-direction of the load point. The bending
moment due to the tensile force F will therefore decrease, which is accounted for in the
finite strain analysis but not in the small strain analysis. One may also observe that the
remote J-value in the tension-bending case is comparatively lower relative to the pro-
portional case in the small strain analysis than in the finite strain analysis. When the tensile

1.05 r T T T
bend.-tens.
1.00 ;
0.95 proportional E
B,
N
> 0% | :
-?,: tens.-bend.
&) 7
~
\
0.80 [ —— domain int]
---------- contour int;
0'75 1 1 t S
00 02 04 06 08 1.0
R o/

Fig. 5. J and G v8 R gpiour from the small strain analysis corresponding to the load level 3 case.
Gprop = 21.3(6%a/E).
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force F first is applied the load point is displaced in negative X-direction and thus the
induced bending moment is increasing. This is again only accounted for in the finite strain
analysis. In fact, J is a factor of 2.1 larger in the finite strain analysis at this first load step.
Obviously J-results computed for “bending sensitive” structures loaded in tension can be
remarkably different if large deformation is taken into account or not.

3.1.2. Near-tip field characterization in plane strain. In order to find the influence of
the remotely applied nonproportional loads, the near-tip fields are examined within the
framework of the J-Q theory (O’Dowd and Shih, 1991, 1992, hereafter referred to as OS).
A brief review of the J-Q theory will be given below.

In OS the modified boundary layer formulation (MBL) was investigated. The remote
tractions are given by the first two terms of the small-displacement-gradient linear elastic
solution (Williams, 1957), as depicted in Fig. 6. By generating the full range of small-scale
yielding solutions ((¢;;)ssy), OS considered the difference field defined by :

Ac;; = (0ij)ssy — (0))rer (25)

where (g;;)rer can be the HRR-field or (6,;)ssv.7—o. The latter could be regarded as a more
natural choice, especially if the material is not strictly of power law type. This latter choice
will be used in this study. By systematic investigation of the difference fields OS found that
in the forward sector |8] < n/2 of the annulus J/oy < r < 5J/oy the difference field displayed
minimal dependence on r, leading to the simple form:

Aoy = Qoyd,;(0). (26)

Here the angular functions, 6;;(6) are normalized by setting 6,4,(8 = 0) equal to unity.
Moreover, OS noted that in the forward sector, 6,,(8) could approximately be replaced by
d;;. Then, Q effectively corresponds to a spatially uniform hydrostatic stress in this sector,
with the interpretation that it is a measure of near-tip stress triaxiality, or crack-tip
constraint, relative to a reference high triaxiality field. In OS Q is defined by :

Q=Gi_"(6f)5¢2 at 8=0,r=2Joy. @7
Y

This definition is used to compute Q from the numerical solutions in the present study.

The crack-tip opening displacements, CTOD, defined by the opening where the 45°
lines drawn backwards from the crack-tip intersect the deformed crack faces, can be written
as:

Fig. 6. Two-parameter boundary layer formulation (MBL).
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J
o =d—, (28)
Oy

where d is a function of Q and dimensionless combinations of material parameters. Now,
OS denote the whole range of field solutions generated with the boundary layer formulation
as a J-Q family of fields, where the Q-value particularizes a specific member of the family.

In this investigation Q is determined for each load level and each loading sequence for
the SEN specimen. In addition MBL solutions—J-Q fields—are generated by choosing
T/oy to give the same Q-values as in the proportional loading sequences. The solutions of
the SEN specimen will be compared with the MBL solution below.

The MBL model has a similar near-tip mesh as the one used for the SEN specimen
shown in Fig. 2(c), but with an initial notch radius, p,, equal to 0.83 x 10~ 'R. Here R is
the radius to the outer boundary of the MBL model [see Fig. 2(c)]. Small-scale yielding
conditions are enforced by not allowing the plastic zone size to extend more than 0.01R
from the initial notch. Furthermore the K-T field is applied, keeping the 7/K ratio constant,
as prescribed displacements corresponding to the tractions in Fig. 6.

Figure 7 shows how Q develops under increasing load for all loading sequences. Also
included are the pure tension and the pure bending cases. The pure bending case is con-
sidered to be a highly constrained case, since Q is virtually zero until the loading gets very
high, where Q decreases. On the contrary, the pure tension case is considered to be a lowly
constrained case, since Q is decreasing with increasing load and at high load levels Q
saturates at roughly — 1.4. Obviously different loading paths must have separate Q vs 4, or
J, histories. The bending—tension sequences implies going from a high to a lower constrained
situation. The tension-bending sequencies implies going to a low and then to a somewhat
more constrained situation. Finally at proportional loading Q is monotonically decreasing
with increasing load. At the first load level (4 ~ 1/1896), the plastic zone is most likely
embedded in a zone characterized by an elastic K-T field as applied to the MBL problem
described above and small-scale yielding conditions should apply. If so, @ must depend on
the applied forces (F and P) only, since in the small-scale yielding situation there is a one
to one correspondence between 7 and Q (cf. OS ; Betegon and Hancock, 1991). This indeed
appears to be true.

In Figs 8-11 a concentrated representation of the stress and strain fields is given. In
these figures r is the radial distance in undeformed configuration from the intersection point
of the initial notch and the symmetry plane. Figure 8 shows the angular distribution of the

0-5 L t T 1
A=1/1200  A=1/200

[ bendi
LV Q<1800 A=1/400,

0.0

D 05

-1.0 | ® proportional
< non-prop. (tens.-bend.)

[ + non-prop. (bend.-tens.) A=1/12.1

- 1 .5 L i s e
-5.0 -4.0 -3.0 -2.0 -1.0

log(2)

Fig. 7. Different loading paths for the SEN specimen having separate Q vs nondimensional loading
parameter (A = J/(Loy)), or J, histories.
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Fig. 8. Angular variation at r/(J/oy) = 2 of hydrostatic stress, 6, = 6,/3, for the MBL solution and

for the SEN specimen with different loading sequences. Also included is the MBL (Q = 0)-solution.

The load levels are (a) 4 = 1/1896, (b) 4 & 1/143, (c) 4 ~ 1/28.8 and (d) A = 1/12.1. The legends for
the SEN specimen are shown in (a).

hydrostatic stress, denoted gy, at a radial distance of 2J/gy. The agreement. with the MBL
solution is excellent at the lowest load level in the whole range, as expected for reasons
discussed above. At the higher load levels the agreement is still good at least in the forward
sector. That the difference field is almost hydrostatic here is clear by comparison with the
reference field ((6,)ssy.r-o), also included.

The normal stress distribution ahead of the crack is shown in Fig. 9. The angle,
8 = 1.6°, corresponds to the element Gauss points closest to the symmetry plane. For the
lowest load level the agreement with the MBL solution is extremely good for all loading
sequences, as expected. For the remaining load levels, where large-scale yielding prevails,
the ¢, component is somewhat lower than in the MBL solution, implying that é,,(8 ~ 0)
is larger than unity and actually equal to 1.2. This is in accordance with OS, where similar
results are reported in the case of large-scale yielding. When A becomes large, the tension—
bending sequence starts to deviate from the other loading sequences and has a slightly
higher Q-value. At the highest load level all loading sequences deviate from the MBL
solution. This could be explained by a bending induced stress gradient across the ligament.
The hoop stress is compressive near the free surface opposing the crack tip. Note that here,
the size of the ligament is equal to 12.1 (J/ay).

The radial variation of the equivalent plastic strain at 6 = 43.4° is shown in Fig. 10.
The conformity with the MBL solution is notable at the lowest load level. At higher load
levels the different loading sequences agree reasonably well with each other, but the
deviations from the MBL solution is significant. This discrepancy is not unexpected since
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Fig. 9. Comparison of normal stresses ahead of the crack tip (§ = 1.6°) between the MBL-solution
and different loading paths for the SEN specimen. The load levels are (a) 4 = 1/1896, (b) 4 = 1/143,
(c¢) A~ 1/28.8 and (d) 4 =~ 1/12.1. The legends for the SEN specimen are shown in (a).

a small deviation from the MBL stresses, as observed above, is magnified in strains
[€? oc (6/0v)"). However, very close to the blunted crack tip all solutions fall close together.
The reason for this is that here the influence of Q is minimal. In fact Q —+ 0 when r — 0 as
can be seen in Fig. 9, and the plastic deformation is determined by J alone.

The angular variation of equivalent plastic strain at a radial distance equal to 2J/oy is
shown in Fig. 11. In order to examine the influence of Q, the reference field ((€”)ssy.r—o) is
also included. Again all loading sequences coincide with the MBL solution at the lowest
load level, but at the higher load levels the discrepancies are considerable. Here the difference
could be referred to as an offset in phase and the plastic deformation is pushed towards the
symmetry plane (8 = 0). Note that the maximum value from the SEN specimen solutions
does not diverge more than 10% from the maximum value from the MBL solution at each
load level. As can be seen the different loading sequences agree well with each other, except
at the highest load level, where also the Q-values from the tension-bending and the bending-
tension sequences respectively deviate somewhat from the proportional sequence as can be
seen in Fig. 9(d).

The crack tip opening, d,, is computed from the numerical solutions as described above
and the function 4 is estimated in accordance with eqn (28). In Fig. 12, d is plotted against
Q for all loading sequences and compared with the MBL solution. At Q equal to zero, d is
equal to 0.42. This is somewhat lower than 0.44, which McMeeking (1977a) reported using
the same type of material law, but with a larger oy/E ratio and this could account for at
least some of the discrepancy. At lower load levels, corresponding to higher Q-values, the
proportional loading sequence agrees very well with the MBL solution. Here, the trend is
that the tension—bending sequence has a slightly lower 4 value and the bending—tension

SAS 31:1-B
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Fig. 10. The equivalent plastic strain &P vs r/(J/oy) at 8 = 43.4° for the MBL-solution and the SEN
specimen with different loading paths. The load levels are (a) A=~ 1/1896, (b) 1=~ 1/143,
(c) A~ 1/28.8 and (d) A ~ 1/12.1. The legends for the SEN specimen are shown in (a).

sequence has a slightly higher d value than the MBL solution. At the higher load levels the
proportional sequence and especially the bending—tension sequence starts to deviate from
the MBL solution.

3.2. Example 2 : combined bending and tension in a three-dimensional specimen

In this second example a plate specimen with a semi-elliptical surface crack (SCT) is
studied, as depicted in Fig. 13. Figure 14 shows the finite element model used (only a quarter
of the full body is modelled for symmetry reasons) and the definition of a dimensionless
parameter s which defines the position along the crack front. The circular tube embracing
the crack front contains 492 elements divided in 12 slices and the remaining part includes
1110 elements. Here the midnodes are placed on the ellipses and hyperbolas forming the
mesh in this region. For the elastic-plastic analysis the initial notch radius, p,, is
0.93 x 107 3g. The face opposing the crack surface is constrained to remain on a plane.

3.2.1. Results : combined bending and tension in a three-dimensional specimen. Also in
this case a linear elastic (v = 0.3) analysis is performed to test the implemented J-integral
routine. A combination of N and M, see Fig. 13, is chosen to give pure tension at the
cracked plane. An average J-value in each element slice is calculated from contours passing
through the 2nd to the 9th element ring surrounding the crack tip. This together with the
variation around the mean value are shown in Table 3. The agreement between the methods
is extremely good, the difference is of the same order as the variation around the mean
value for the contour integral method.
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Fig. 13. The three-dimensional bending—torsion example investigated—SCT specimen.
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Fig. 14. Finite element model of a quarter of the SCT specimen, different crack tip meshes and
definition of the parameter s.

If instead the pointwise values from the domain integral method are checked, a small
path dependence is detected when the free surface (s = 1) is approached. The trend for this
path dependence is that G increases slightly with increasing contour radius evaluated on
midnodes and G decreases slightly with increasing contour radius evaluated on vertex nodes.

Table 3. Mean J and G values, of contours numbers 2-9, along the crack front for the linear elastic test example

(SCT)
Position s 0.056 0.166 0.275 0.371 0480 0.573 0.659 0.737 0.807 0.869 0925 0.976
G/(o%a/E) 0.2010 0.1989 0.1944 0.1880 0.1797 0.1697 0.1585 0.1466 0.1350 0.1254 0.1205 0.1251
Variation % 0.041 0.040 0.038 0.035 0.028 0.028 0.033 0.043 0.045 0.068 0.071 0.16
J/(6}a/E) 0.2013 0.1991 0.1948 0.1884 0.1801 0.1701 0.1588 0.1470 0.1354 0.1258 0.1209 0.1260

Variation % 037 038 037 037 037 036 035 032 027 023 030 1.10
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Fig. 15. Linear elastic test (SCT specimen) showing element averaged J-values (J) from contour
integration, element averaged J-values (G) and pointwise J-values of contours number 2 and number
9 from domain integration vs position, s, along the crack front.

This is illustrated by plotting pointwise G-values vs crack front position, s, choosing contour
number 2 (close to the crack front, R, = 0.01a) and contour number 9 (remote from the
crack front, Ry & 0.5a), as shown in Fig. 15. Here, the element average values are also
included for comparison. Note that the pointwise J-values from contour number 9 start to
oscillate around G when s — 1, while this is not the case for contour number 2. This problem
is probably due to large gradients in the field variables tangential to the crack front and the
mesh is most likely to be too coarse close to the free surface. This effect is obviously very
small if an averaged J-value (G) is calculated.

The elastic—plastic finite strain calculations are carried out for a material with v = 0.3,
oy/E = 1/798 and where the hardening properties in eqn (15), given as the yield function,
are shown in Fig. 16. If a fit of eqn (22) to the data in Fig. 16 is done the hardening
parameter, n, will roughly be 5. The nonproportional load is applied as follows: The
specimen is first given an initial bending moment M, by rotating the ends an angle $,, see
Fig. 13. It is then loaded in tension, keeping 3, constant. Here a hat (") denotes resulting
forces or moments in the crack plane. The loading is depicted in Fig. 17 as M and N, scaled
with the respective limit loads without a crack. The initial moment M, is large enough to
give plastic deformation in the body even without a crack.

O'/GY

0 200 400 600 800 1000
EP/ey

Fig. 16. Yield function for the three-dimensional elastic—plastic analysis: Cauchy stress vs
logarithmic plastic strain.
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Fig. 17. Loading sequence for the SCT specimen.

This problem was solved on a CRAY-XMP main frame computer and the final load
level was reached in 101 load steps requiring 314 equilibrium iterations (Newton’s method)
and in total 35.4 CPU-hours were needed.

With the linear elastic results in mind, the potential deviation in average J-values
between the methods should depend on the degree of nonproportionality of the loading.
We will focus our attention on three positions along the crack front, s = 0.056, s = 0.573
and s = 0.925, to get a condensed picture of the overall behaviour. J-values averaged over
one element slice are presented in Table 4 for the final load level, where 4., ~ 1/24. In the
expression of 4, eqn (19), L is taken as the crack depth a in Fig. 13. Here contours from
the 2nd to the 8th element ring are included (only to the 7th element ring for the contour
integral method, since unfortunately no more data were saved during the FEM analysis).
The results for positions s = 0.056 and s = 0.925 are also shown in Fig. 18a. In this three-
dimensional case as well as in the two-dimensional case, a significant path dependence
immediately adjacent to the blunted crack tip is apparent, as discussed in Section 3.1.1.

The agreement between the methods is very good with the same trend as for the two-
dimensional results that the domain integral values tend to the remote values quicker than
the contour integral values. For both methods 95% of the remote value is reached at a
contour at a radial distance, measured in the undeformed configuration, of roughly 2J/oy.
This is valid along the whole crack front based on element slice average values.

Table 4. J and G values at different contour radii at three locations along the crack front for the elastic-plastic
finite strain analysis (SCT)

Contour 2 3 4 5 6 7 8
Reonons/@ 00134 00298 00606 0.117 0.219 0.345 0.509
—o00ss G/@3alE) 25.97 28.65 29.97 30.68 31.16 31.57 32.09
s=0. Reonions/@ 00112 00255 00523  0.102 0.191 0.310 -
J/(c2a/E) 22.48 26.84 29.13 30.23 30.87 31.27 —
Reonour/@ 00108 00241 00490  0.0951  0.179 0.282 0.420
G/(cia/E) 25.03 28.53 30.44 31.40 31.88 3224 32.48
§=0513 g Ja 0.009 00206 00423 00825 015 0272 —
Jl(ca/E) 21.08 26.09 29.21 30.80 31.60 32.04 —
Repour/a 0.0064 00142 00292 00574  0.111 0.177 0.274
G/(sia/E) 17.01 20.37 22.73 23.90 24.06 24.18 24.16
5=0925 g  la 0.0053 00121  0.0251 0.0496  0.095 0.163 —

J/(o2alE) 14.69 1906 2135 2238 23.11 23.87 —
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Fig. 18. Element average J-values, J (contour integral) and G (domain integral) for the SCT
specimen (a) Vs R at two locations along the crack front and (b) vs position, s, along the crack
front, where the remote contour is used in both methods.
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Choosing contour number 7, the variation of J and G along the crack front, normalized
by o2a/E, can be seen in Fig. 18(b), where the corresponding load levels, a, b and c, are
depicted in Fig. 17. If expressed in the nondimensional loading parameter they compare to
Aamax & 1/296, Ay max = 1/61 and A, . & 1/24. No significant disagreement can be observed.

3.3. Example 3 : simulated crack growth in three dimensions

The last example deals with simulation of crack propagation (mode I) in a 20% side-
grooved CT-specimen. The geometry of the specimen as well as the finite element model of
the quarter-body (symmetry) are shown in Fig. 19. The model has six element layers across
the half-thickness, four of which are located at the crack front and two in the side-grooved
zone. The circular region in each layer contains 119 elements, divided in 12 circular rings,
and in total the model includes 1278 elements. Remote from the crack the mesh is coarser
and consists of only three layers. Appropriate symmetry conditions are employed and the
load is applied by uniform prescribed transverse displacements for nodes lying on a line
depicted in Fig. 19. The normalized distance along the crack front, s, is expressed by
s = X,/2 By, where By, is the net thickness of the specimen. The crack front is slightly curved
and has a parabolic continuous shape, symmetric with respect to X; = 0. The initial crack
length, ay(s), isequal to 0.613W at s = 0 and equal t0 0.594W at s = + 1. The crack growth,
Aa, is uniform along the crack front and at the final load Aa is 0.0456 W.

3.3.1. Results : simulated crack growth in three dimensions. The crack growth history
is chosen to comply roughly with a linear Jg-curve expressed by :
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Fig. 19. The three-dimensional crack growth example investigated—CT specimen : geometry and
finite element model of a quarter of the specimen.

Jr/(6%L/E) = a+B(Aa/L), (29)

where « and B are dimensionless constants. Specifically f~ 1.08x10% and L= W
—ay(s = 0). The growth is simulated by means of a nodal relaxation technique, where
the solution is divided into 12 steps with increasing load. Crack growth is initiated at
the end of the third step and for each following step, nodes ahead of the crack front are
released. The crack growth, Aa, at some steps is shown in Table 5. The mesh is so constructed
that the crack growth is measured in the deformed configuration at a load level cor-
responding to crack growth initiation. In Table 5 also the load levels in terms of A are
shown for the different steps. In the expression of A, eqn (19), Jis taken as the remote value
in the element layer adjacent to the symmetry plane.

An element average J-value, as described previously, is calculated at circular paths
surrounding the initial crack front. Consequently, contours passed by the propagating crack
will be omitted. The “radial” length to a contour will then be taken as the distance between
the propagating crack front and the contour in question ahead of the crack front.

The material assumptions are the same as in the previous three-dimensional example
and an elastic—plastic finite strain analysis is undertaken.

The problem was solved by taking 325 load increments, with about three equilibrium
iterations in each increment, requiring 157 CPU-hours on a HP-730 work station.

Up to crack growth initiation, step 3, the loading can be considered as proportional
and both methods should yield the same converged remote J-value. This is indeed the case
as can be seen in Table 6 and in Fig. 20(a), where results are given for the first element
layer (s = 0.25). The picture is the same in all layers except in the layer adjacent to the side-
groove, which will be commented upon below. When the crack starts to propagate both
methods give the same remote values which appears to be path independent, at least for
small amounts of growth, see Table 6 and Fig. 20(b). For large amounts of growth, however,
the remote values do not seem to converge to a path independent value, and significant
differences between the methods can be observed. At this instance the load level is so high
that the near-tip field, of order J/ay, is a sizeable fraction of the remaining ligament and it
is questionable if there exists a remote J-characterized field controlling the crack growth.

Table 5. Crack growth, the load level 1 and the parameter w, for different
solution steps (CT)

Step number -3 8 10 12
Aa/W 0.0 0.0128 0.025 0.0456
A ~1/19 ~1/10 ~1/6.5 ~1/4.7

() 26 14 8.7 6.4
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Table 6. J and G at different contour radii at position s = 0.25, for the crack growth example (CT)
Reonour/L 0.173 0.235 0.306 0.367 0.507 —
ax 119 GIGLIE) 39.57 39.96 40.28 40.65 40.76 —
= omtour 0.163 0.221 0.290 0.377 0.483 0.612
J/(6iL/E) 39.48 39.94 40.24 40.58 40.83 40.98
Ropion/L 0.131 0.193 0.264 0.355 0.465 —
1~ 1/10 G/(a:L/E) 69.52 72.28 74.50 76.64 78.02 —
=1/ Reonions/L 0.121 0.179 0.248 0.335 0.441 0.570
Ji(6:L/E) 66.92 70.69 72.92 75.19 77.08 78.38
Reion/ L 0.0996 0.162 0.233 0.323 0.434 —
G/(6%L/E) 99.42 106.35 112.26 117.61 121.52 —
A=x1/6.5 Regnigue/ L 0.0892 0.148 0.217 0.304 0.410 0.539
J/(6iL/E) 92.89 102.14 107.75 113.83 118.70 122.25
Repniour/L 0.0465 0.108 0.180 0.270 0.380 —
G/(61L/E) 114.50 129.31 142.81 154.80 164.44 —
Axl/4T g L 0.0361 0.0945 0.164 0.250 0.357 0.486
Ji(6iL/E) 101.19 119.90 132.17 146.80 157.27 166.12
200 T T . T
(@
S 150
b>-'
N
5
100
S

7/(0,
W
(=3

0 1 1 L 1
00 01 02 03 04
R ! a
200 T r T r
(b) 3~47 Jomain integral *
Swol T
g
S
_ 100 |
g 50 | A=19 '#'
S !—;\—-—-o——-ﬁ——._-&-gc/....!;:
domain integral (pointwise values) },
0 ] - 1 1
0.0 0.2 0.4 0.6 0.8 1.0

S

Fig. 20. Average J-values, J (contour integral) and G (domain integral) for the CT specimen (a) vs
R omour at two locations along the crack front and (b) versus position, s, along the crack front, where
the remote contour is used in both methods. Here the pointwise J-values of the domain integral are
included.
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In addition Hutchinson and Paris (1979) have suggested the following condition for
J-controlled crack growth:

2 0, (30)

For CT specimens some authors suggest that @, > 5 to 7 could be sufficient (cf. Hutchinson,
1983). In Table 5 w is given for the considered load levels. It is of the same order as 1/1
and for the highest load level, corresponding to the largest crack growth, w is roughly equal
to the suggested value for w,.

Using the last contour from each method, element average values versus position s
along the crack front for the four load levels, indicated in Table 6, are shown in Fig. 20.
The general trend is an abrupt increase in J close to the side-groove. This has also been
observed in other investigations of side-grooved CT-specimens (cf. Lorenzi and Shih, 1983 ;
Shivakumar and Newman, 1992). Good agreement between the methods can be seen in the
mid-section of the specimen, while closer to the side-groove there is a significant deviation.
Here the same type of path dependence of the pointwise J-values from the domain integral
method is observed as in the linear elastic example with the SCT specimen above. By
plotting the G-values from the last contour, for A &~ 1/19, severe oscillations can be seen in
Fig. 20. The oscillations are probably due to the strong gradient in the field variables in the
Z-direction (transverse), emanating from the side-groove. The finite element mesh adjacent
to the side-groove is probably too coarse.

4. DISCUSSION AND CONCLUSIONS

By a direct comparison of the integral expressions from the two methods for J-
evaluation, the difference, in both two-dimensions and three-dimensions, are terms which
will vanish if the stressing is proportional. This is well known from previous studies.

In the two-dimensional example, no significant difference was found in the resuits from
the two J-integral evaluation methods, even for strongly non-proportional loads. Different
loading paths gave roughly the same remote J-value. In this example the near-tip stress and
strain fields were carefully investigated. If a path independent remote J-value can be found,
the main question is whether the solution, defined as a point in the J-Q space, will depend
on the history before this point is reached (subjected to the restriction that J should be
monotonically increasing). One can argue in this case that specimens having different J-Q
histories should still have the same J-stress deviator histories, since the differences in the
stress fields are restricted to a deviation in the hydrostatic stress, at least in the forward
sector. Under small-scale yielding conditions the different loading sequences, giving rise to
different J-Q paths, did not influence the stress and strain fields and a good correspondence
with the MBL solution was found. That different J-Q paths to a final point in the J-Q space
have a minimal influence on the near-tip fields under SSY-conditions, is indicated by
O’Dowd and Shih (1991, 1992), who found that the solution was independent of which
T/K ratio that was applied on the MBL problem. This appears to be true also in the
large-scale yielding situations examined. The different loading sequences, corresponding to
separate J-Q histories, agree well with each other and these stress fields coincide well with
the MBL solutions, at least in the forward sector, |8| < 7/2. However, the strain fields deviate
from the MBL solution with a clear pattern. The high plastic straining is “pushed” towards
the plane of symmetry. This, however, appears to have little influence on the CTOD. If the
fracture mechanism is depending on high principal stresses (favouring cleavage fracture),
then the observed differences in plastic strain fields should have no effect on a J-Q based
fracture criterion. On the other hand, if large plastic straining is the primary fracture
mechanism (favouring ductile fracture), then the observed differences in plastic strain fields
could affect the applicability of a J-Q based fracture criterion.

In the three-dimensional examples, the SCT specimen subjected to combined bending—
tension and the CT specimen with simulated crack growth, no significant difference between
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the results from the methods of calculating the J-integral was found if an element average
value of J was calculated. However, when the pointwise J-values from the domain integral
method were checked, a small path dependence was found and it was specially marked if a
strong gradient in the fields tangentially to the crack front existed, like close to the side-
groove in the CT specimen. It is suspected that this is due to an insufficient finite element
mesh in regions where this path dependence is observed.

Furthermore it was found that the domain integral method gives faster convergence
towards the remote J-value than the contour integral method, although the difference is of
minor practical importance.
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